Çankaya University - ECE Department - ECE 376

Student Name :
Student Number :

Duration : 2 hours Open book exam

Questions

1. (50 Points) The two signals $s_{1}(t), s_{2}(t)$ are given as below. Determine what type of modulation (i.e., ASK, PSK, QAM, FSK), these signals represent and their dimensionality. Find the set of $\psi_{k}(t)$ orthogonal basis functions for $s_{1}(t), s_{2}(t)$. Draw the signal constellation diagramme, showing the position, the length of vectors s_{1}, s_{2} and the distance between them. For these signals, draw separately the appropriate receiver diagrammes consisting of correlator type demodulator and matched filter. For the case of matched filter, find the output if $s_{1}(t)$ was sent from the transmitter.

Solution: Since one orthogonal basis function is
sufficient to represent both $S,(t)$ and $\frac{1}{2}(t)$, the given
signal, constitute ASk, thus one dimensional, that is

$$
M=2, N=1 \text {. }
$$

$$
\begin{aligned}
& \text { From the condition } \int_{0}^{T} \varphi(t) d t=1 \\
& A \psi=\sqrt{\frac{3}{T}}, \psi(t)=\frac{t}{T} \sqrt{\frac{3}{T}}
\end{aligned}
$$

$$
\text { Energy of } \frac{s,(t)}{s_{2}(t)}=\int_{0}^{T} S_{2}{ }^{2}(t) d t=\int_{0}^{T} s_{2}{ }^{2}(t) d t=\frac{A^{2} T}{3}
$$

$\psi(\tau)$
$s,(t)$ and $s_{2}(t)$ in terms of $\varphi(t)$

$$
s_{1}(t)=A \sqrt{\frac{T}{3}} \psi(t), \quad s_{2}(t)=-A \sqrt{\frac{F}{3}} \psi(t)
$$

$$
S_{1}=[A \sqrt{T / 3}], S_{2}=[-A \sqrt{T / 3}]
$$

Distance between s, and s_{2} vectors is

$$
\left\|s_{1}-S_{2}\right\|=2 A \sqrt{T / 3}
$$

Receiver Diáyramme
a) Correlator type of demodulator

b) Matched filter type of demodulator.

$$
n(t)=\sin (t)+n(t) \quad h(t)=\psi(T-t)
$$

\qquad
\uparrow
sample every Tee.

Output of $M F$ detector [if $s,(t)$ is transmitted]

$$
y(t)=\int_{0}^{t} s,(\tau) h(t-\tau) d \tau+\int_{0}^{t} n(\tau) b(t-\tau) d \tau
$$

signal part

$$
y_{1 د}^{\prime}(t)=\int_{0}^{t} s,(\tau) \psi(T-t+\tau) d \tau
$$

Insert page for Yt of NT 2.04.2007

Graphically

As seen from above the lower end of $\psi(T-t+\varepsilon)$ is marked as $t-T$, upper end is t. Accordingly If $S,(t)$ was transmitted, overlap will begin at
$t=0$ and terminate at $t=2 T$
Thus for the two regions

1) When $0<t<T$

$$
y_{1 s 1}(t)=\frac{A}{T} \sqrt{\frac{3}{T}} \int_{0}^{t} \tau^{2} d 厶=\frac{A}{T} \sqrt{\frac{3}{T}} \frac{t^{3}}{3}
$$

2) when $T<t<2 T$

$$
\begin{aligned}
& y_{1 s 2}(t)=\frac{A}{T} \sqrt{\frac{3}{T}} \int_{t-T}^{T} \tau^{2} d \tau \\
& =\frac{A}{3 T} \sqrt{\frac{3}{T}}\left(2 T^{3}-t^{3}+3 t^{2} \cdot T-3 t T^{2}\right)
\end{aligned}
$$

We see that when $t=T$

$$
y_{1 s 1}(t=T)=y_{1 s 2}(t=T)=A T^{2} \sqrt{\frac{1}{3 T}}
$$

and at $t=2 T$

$$
y_{152}(t=2 T)=0
$$

2. (20 Points) A message signal, $m(t)$ occupying a bandwidth of 3 kHz is modulated in DSB format and transmitted. The received power of this signal is $1 \mu \mathrm{~W}$. Assuming AWGN with noise spectral density $N_{0}=10^{-10} \mathrm{~W} / \mathrm{Hz}$, write the expression for the received signal plus noise and calculate the signal to noise ratio (SNR) at the input to receiver.

Solution:

$$
n(t)=A, m(t) \cos 2 \pi+c t+n(t)
$$

Where $A_{1}^{2} P_{m}=2 \times P_{R}=2 \times+M W$ and $N_{0}=10^{-10} \mathrm{~W} / \mathrm{Az}$

Hence noise power at input to receiver

$$
\begin{aligned}
& P_{n}=2 \times \int_{-3 k H z}^{t 3 k H z} \frac{N_{0}}{2} d t=10^{-10} \times 6 \times 10^{3}=6 \times 10^{-7} \mathrm{waHt} \\
& S N R=\frac{A_{c}^{2} P_{m}}{\frac{2 \times 10^{-6}}{6 \times 10^{-7}}}=\frac{10}{3} \simeq 3.34 \text { or } 5.23 \mathrm{~dB} \\
& 2 W N_{0}
\end{aligned}
$$

The above is from Eq $(5.1 .13)$ of Prockis 2002
3. (30 Points) Answer the following questions as True or False. For the False ones give the correct answer or the reason
a) In FM, the time derivative of the message signal varies the phase of the carrier: $\mathrm{Fa} / \mathrm{se}$ The integral of message signal varies the phase of the carrier.
b) In FSK, M (number of possible signals to be transmitted) $=N$ (Dimensionality of signal space): True
c) Matched filter has a time response of $s_{m}(T-t)$ when $s_{m}(t)$ is one of the signals to be transmitted :
False

Time response of $M_{1}=$ is $h_{k}(t)=\psi_{k}(T-t)$
(k th branch)
d) In QAM, signal amplitudes vary with time during one symbol period: True but this is not the essential requirement to establish GAM
e) PSK can have one to three dimensions: $\mathrm{Fa}_{\mathrm{a}} / \mathrm{se}$
fIsk is only two dimensional

